1
0
Fork 0
mirror of https://github.com/ansible-collections/community.general.git synced 2024-09-14 20:13:21 +02:00
community.general/lib/ansible/module_utils/splitter.py
2016-08-13 09:56:12 -05:00

212 lines
9.2 KiB
Python

# This code is part of Ansible, but is an independent component.
# This particular file snippet, and this file snippet only, is BSD licensed.
# Modules you write using this snippet, which is embedded dynamically by Ansible
# still belong to the author of the module, and may assign their own license
# to the complete work.
#
# Copyright (c), Michael DeHaan <michael.dehaan@gmail.com>, 2012-2013
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
def _get_quote_state(token, quote_char):
'''
the goal of this block is to determine if the quoted string
is unterminated in which case it needs to be put back together
'''
# the char before the current one, used to see if
# the current character is escaped
prev_char = None
for idx, cur_char in enumerate(token):
if idx > 0:
prev_char = token[idx-1]
if cur_char in '"\'' and prev_char != '\\':
if quote_char:
if cur_char == quote_char:
quote_char = None
else:
quote_char = cur_char
return quote_char
def _count_jinja2_blocks(token, cur_depth, open_token, close_token):
'''
this function counts the number of opening/closing blocks for a
given opening/closing type and adjusts the current depth for that
block based on the difference
'''
num_open = token.count(open_token)
num_close = token.count(close_token)
if num_open != num_close:
cur_depth += (num_open - num_close)
if cur_depth < 0:
cur_depth = 0
return cur_depth
def split_args(args):
'''
Splits args on whitespace, but intelligently reassembles
those that may have been split over a jinja2 block or quotes.
When used in a remote module, we won't ever have to be concerned about
jinja2 blocks, however this function is/will be used in the
core portions as well before the args are templated.
example input: a=b c="foo bar"
example output: ['a=b', 'c="foo bar"']
Basically this is a variation shlex that has some more intelligence for
how Ansible needs to use it.
'''
# the list of params parsed out of the arg string
# this is going to be the result value when we are donei
params = []
# here we encode the args, so we have a uniform charset to
# work with, and split on white space
args = args.strip()
try:
args = args.encode('utf-8')
do_decode = True
except UnicodeDecodeError:
do_decode = False
items = args.split('\n')
# iterate over the tokens, and reassemble any that may have been
# split on a space inside a jinja2 block.
# ex if tokens are "{{", "foo", "}}" these go together
# These variables are used
# to keep track of the state of the parsing, since blocks and quotes
# may be nested within each other.
quote_char = None
inside_quotes = False
print_depth = 0 # used to count nested jinja2 {{ }} blocks
block_depth = 0 # used to count nested jinja2 {% %} blocks
comment_depth = 0 # used to count nested jinja2 {# #} blocks
# now we loop over each split chunk, coalescing tokens if the white space
# split occurred within quotes or a jinja2 block of some kind
for itemidx,item in enumerate(items):
# we split on spaces and newlines separately, so that we
# can tell which character we split on for reassembly
# inside quotation characters
tokens = item.strip().split(' ')
line_continuation = False
for idx,token in enumerate(tokens):
# if we hit a line continuation character, but
# we're not inside quotes, ignore it and continue
# on to the next token while setting a flag
if token == '\\' and not inside_quotes:
line_continuation = True
continue
# store the previous quoting state for checking later
was_inside_quotes = inside_quotes
quote_char = _get_quote_state(token, quote_char)
inside_quotes = quote_char is not None
# multiple conditions may append a token to the list of params,
# so we keep track with this flag to make sure it only happens once
# append means add to the end of the list, don't append means concatenate
# it to the end of the last token
appended = False
# if we're inside quotes now, but weren't before, append the token
# to the end of the list, since we'll tack on more to it later
# otherwise, if we're inside any jinja2 block, inside quotes, or we were
# inside quotes (but aren't now) concat this token to the last param
if inside_quotes and not was_inside_quotes:
params.append(token)
appended = True
elif print_depth or block_depth or comment_depth or inside_quotes or was_inside_quotes:
if idx == 0 and not inside_quotes and was_inside_quotes:
params[-1] = "%s%s" % (params[-1], token)
elif len(tokens) > 1:
spacer = ''
if idx > 0:
spacer = ' '
params[-1] = "%s%s%s" % (params[-1], spacer, token)
else:
spacer = ''
if not params[-1].endswith('\n') and idx == 0:
spacer = '\n'
params[-1] = "%s%s%s" % (params[-1], spacer, token)
appended = True
# if the number of paired block tags is not the same, the depth has changed, so we calculate that here
# and may append the current token to the params (if we haven't previously done so)
prev_print_depth = print_depth
print_depth = _count_jinja2_blocks(token, print_depth, "{{", "}}")
if print_depth != prev_print_depth and not appended:
params.append(token)
appended = True
prev_block_depth = block_depth
block_depth = _count_jinja2_blocks(token, block_depth, "{%", "%}")
if block_depth != prev_block_depth and not appended:
params.append(token)
appended = True
prev_comment_depth = comment_depth
comment_depth = _count_jinja2_blocks(token, comment_depth, "{#", "#}")
if comment_depth != prev_comment_depth and not appended:
params.append(token)
appended = True
# finally, if we're at zero depth for all blocks and not inside quotes, and have not
# yet appended anything to the list of params, we do so now
if not (print_depth or block_depth or comment_depth) and not inside_quotes and not appended and token != '':
params.append(token)
# if this was the last token in the list, and we have more than
# one item (meaning we split on newlines), add a newline back here
# to preserve the original structure
if len(items) > 1 and itemidx != len(items) - 1 and not line_continuation:
if not params[-1].endswith('\n') or item == '':
params[-1] += '\n'
# always clear the line continuation flag
line_continuation = False
# If we're done and things are not at zero depth or we're still inside quotes,
# raise an error to indicate that the args were unbalanced
if print_depth or block_depth or comment_depth or inside_quotes:
raise Exception("error while splitting arguments, either an unbalanced jinja2 block or quotes")
# finally, we decode each param back to the unicode it was in the arg string
if do_decode:
params = [x.decode('utf-8') for x in params]
return params
def is_quoted(data):
return len(data) > 0 and (data[0] == '"' and data[-1] == '"' or data[0] == "'" and data[-1] == "'")
def unquote(data):
''' removes first and last quotes from a string, if the string starts and ends with the same quotes '''
if is_quoted(data):
return data[1:-1]
return data